Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression
نویسندگان
چکیده
Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner.
منابع مشابه
Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code
Eukaryotic RNA polymerase II (RNAP II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation of Ser2, Ser5 and Ser7 residues orchestrates the binding of transcription and RNA processing factors to the transcription machinery. Recent studies show that the tw...
متن کاملComprehensive RNA Polymerase II Interactomes Reveal Distinct and Varied Roles for Each Phospho-CTD Residue.
Transcription controls splicing and other gene regulatory processes, yet mechanisms remain obscure due to our fragmented knowledge of the molecular connections between the dynamically phosphorylated RNA polymerase II (Pol II) C-terminal domain (CTD) and regulatory factors. By systematically isolating phosphorylation states of the CTD heptapeptide repeat (Y1S2P3T4S5P6S7), we identify hundreds of...
متن کاملPhosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain
The carboxy-terminal domain (CTD) of the RNA polymerase II (Pol II) large subunit cycles through phosphorylation states that correlate with progression through the transcription cycle and regulate nascent mRNA processing. Structural analyses of yeast and mammalian CTD are hampered by their repetitive sequences. Here we identify a region of the Drosophila melanogaster CTD that is essential for P...
متن کاملHeptad-Specific Phosphorylation of RNA Polymerase II CTD.
The carboxy-terminal domain (CTD) of RNA polymerase II (Pol II) consists of heptad repeats with the consensus motif Y1-S2-P3-T4-S5-P6-S7. Dynamic phosphorylation of the CTD coordinates Pol II progression through the transcription cycle. Here, we use genetic and mass spectrometric approaches to directly detect and map phosphosites along the entire CTD. We confirm phosphorylation of CTD residues ...
متن کاملPhosphorylation causes a conformational change in the carboxyl-terminal domain of the mouse RNA polymerase II largest subunit.
The carboxyl-terminal domain (CTD) of the largest subunit of eukaryotic RNA polymerase II can be phosphorylated by a p34cdc2/CDC28-containing CTD kinase. Phosphorylated serine (or threonine) is located at positions 2 and 5 in the repetitive heptapeptide consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. We show here that phosphorylation of the mouse CTD retards its electrophoretic mobility ...
متن کامل